# **Ceramic support for cell cultures**

A. KRAJEWSKI<sup>1</sup>, A. RAVAGLIOLI<sup>1</sup>, M. KIRSCH<sup>2</sup>, G. BIAGINI<sup>3</sup>, R. SOLMI<sup>3</sup>, M. BELMONTE<sup>3</sup>, C. ZUCCHINI<sup>4</sup>, M. G. GANDOLFI<sup>4</sup>, C. CASTALDINI<sup>4</sup>, L. RODRIGUEZ<sup>5</sup>, R. GIARDINO<sup>6</sup>, R. MONGIORGI<sup>7</sup>, E. RONCARI<sup>1</sup>, L. ORLANDI<sup>8</sup> <sup>1</sup>Institute for Technological Research on Ceramics of the Italian National Research Council, Faenza, Italy <sup>2</sup>WITE Graphy, Berlin, Germany,

<sup>2</sup>WITE GmbH, Berlin, Germany

<sup>3</sup>Faculty of Medicine, Institute of Normal Human Morphology, University of Ancona, Italy
 <sup>4</sup>Faculty of Medicine, Institute of Histology, University of Bologna Italy
 <sup>5</sup>Dept. of Medicine, University of Torino, Italy

<sup>6</sup>Div. of Esperimental Surgery of the University of Bologna, Orthopaedic Institutes "Rizzoli", Italy

<sup>7</sup>Dept. of Hearth Sciences and Faculty of Pharmacy, University of Bologna, Italy <sup>8</sup>National Institute for Study and Treatment of Tumours-Oncology C, Milan, Italy

Research was carried out on the use of ceramics as supports to host mammalian cells. The research was part of a programme whose priority was to study the possibility of using ceramics in the non-traditional sector of the biomedical field. The aim of the study was also to verify the suitability of particular types of ceramics dealt with in the literature for these applications. Among the different samples tested the cordieritic one proved to be very interesting, at least in relation to the cellular cultures considered. The chemical composition of the material is not, however, the only important aspect, since other parameters concur to make the hosting of cells highly acceptable. Of particular importance is the rugosity and porosity of the surface and its flaking, not only externally, but also in the pores.

## 1. Introduction

A wide number of different experiments have demonstrated the ability of ceramic materials to host cell colonies. The targets connected with this use are many: growth of specific cells lines, diagnostic checking procedures, production of chemicals, production of pharmaceutical principles with bioreactors [1-3], production of filtering devices including biochemical dispensers [4] temporarily or permanently implanted in the human body.

A comparative study was carried out on different ceramics in order to look for and select those with the best hosting performances. The study dealt with the physico-chemical micromilieu after cell insemination. The substances examined in this first study and used to prepare suitable ceramic materials were alumina, hydroxyapatite, bioglasses and cordierites.

A further step consisted in studying ceramics prepared in different ways (different treatments of powders, different shaping methods, different thermal treatments, etc.) once the most suitable substance was singled out.

For all materials, particular care was devoted to examining the influence of porosity, its texture, and the intrinsic nature of the ceramic in relation to cytopathologic results. Further physico-chemical measurements, e.g. concerning the fluid motion inside the porous body of the ceramic, will be carried out on the ceramic material showing the best biological performance in terms of growth of cell colonies. The ceramic matrix provides a large surface in a small

0957–4530 © 1996 Chapman & Hall

volume, particularly for bioreactors, thereby minimizing the flexural strength on cells so that a serum-free medium can be utilized. A non-porous ceramic is utilized also in the case of cellular harvesting, when either tripsinization or cold shock and pH variations are necessary. Cultures in ceramic supports ensure the best cellular increase, higher metabolic activity, and increased general productivity in the case of a reactor [5-7].

Part of this research was devoted to a systematic study of *in vitro* cultures to compare different kinds of ceramic materials (biological glasses included) in order to locate ceramic substrates with good cell-hosting capabilities. To this aim [1], evaluations were made of the physico-chemistry of the ceramic [2], the best suitable texture [3], the possibility of ion exchange with the walls of the ceramic pores [5], and the cell types to be used for these preliminary cultures.

## 2. Materials and methods

The ceramics used to test cellular biocompatibility in vitro were sterilized in a dry atmosphere in an oven at  $140 \,^{\circ}$ C for 90 min and were subsequently put into small wells of 1.2 cm diameter on slabs of Greiner's plastic. Each ceramic sample was tested four times with the three cell types indicated in Table I, together with the culture medium.

50 000 cells ml<sup>-1</sup> were seeded for each wall containing the material to be tested. The cultures were subsequently kept in a thermostatic device at  $37 \,^{\circ}$ C under

TABLE I Utilized cells lines and culture media

| Cell line                                                                 | Culture medium                                                                      |
|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Fibroblasts from human skin esplantation                                  | IMDM + 10% FCS + AM                                                                 |
| Tumoral cells BC215 from<br>Lewis lung carcinoma<br>Melanoma cells A 2058 | Waymouth medium + 10%<br>FCS + 0.1% <i>l</i> -glutamina + AM<br>IMDM + 10% FCS + AM |

IMDM = Iscove's Modified Dulbecco Medium; FCS = Fetal Calf Serum; AM = Antibiotic Mixture constituted with 200 U/ml penicylline and 200  $\mu$ M/ml streptomicyne.

a  $CO_2$  5% atmosphere for 5 days. Before any seeding, cells were tripsinized in a trypsin-EDTA 0.25 M solution in PBS and, after centrifugation at 9000 rpm for 10 min to remove the trypsin, they were tested with Tripan Blue to evaluate their vitality and were counted in Nauebauer's camera. Before being prepared for scanning examination (washings with PBS, fixation with glutheraldheyde 2% in a cacodilate buffer at pH = 7.4), the seeded cells on the material to be analysed for biocompatibility were observed by phase contrast microscopy. The cell lines used were cultivated ones (cutaneous fibroblasts, A 2058 melanocytes tumoral cell line and BC 215 Lewis lung carcinoma cell line). Compatibility evaluations were normally carried out after 5 days of culture. For submicroscopic evaluation, specimen were fixed with 2% glutaraldheyde in 0.1 M cacodylate buffer at pH = 7.4, postfixed in OsO<sub>4</sub> 1% always in cacodylate buffer, dehydrated in increasing ethanol concentration and critical point dried in a CO<sub>2</sub> solid environment, and examined by scanning electron microscope (SEM).

#### 3. Results and discussion

The morpho-structural results of the experiments obtained by microscopic observations using phase contrast microscopy and SEM, are collected in Table II. Cell adhesion of a material is influenced by a series of parameters such as the mutual combination of the electrostatic load of the ceramic surface (Z-potential) with that of the cell membrane (membrane potential), or the weak chemical interaction between the components of the ceramic materials occurring at the surface and functional groups of the proteic molecules of the cellular membrane. Microporosity has been shown to be a fundamental factor for cell proliferation, although to a different extent for each cell line, particularly for the cordierite coded DF (Fig. 1). A common parameter is the hydrophilic degree of the material surface on which cells must achieve good adhesion and proliferation [8].

The hydrophilic behaviour may be influenced by serum occurring in the culture medium, because adsorption of the serum protein may condition subsequent cell adhesion and proliferation. A moderately hydrophilic substratum appears generally to be the best [9, 10] because serious proteins are adsorbed with weak bonds and are therefore more easily moved by adhesive proteins (e.g. fibronectin) produced by the same cells. Cells reply to physical stimuli with alterations in their biology and biochemistry, and the degree of adhesion of a cell to a substrate will condition the shape as well as structural and functional organization of the cell itself [11]. This takes place through generation of intracellular second messengers (cAMP, phosphoinositides, etc., also influenced by Ca<sup>2+</sup>). Adhesion takes place by formation of specific specialized membranes which, anchoring themselves to the substrate, develop a structure called "focal contact" [12]. Among the principal cellular translucers, the ionic non-selective channels and the selective ones for specific ions such as  $Ca^{2+}$ ,  $Na^+$  and  $Cl^-$  are mentioned. Strong interactions with extracellular supports may gives rise to a phenotypic transition [13]. The frequency of cell proliferation and division may increase with the degree of adhesion to a substrate. A wide anchoring of a cell to a substrate with remarkable cellular spreading may activate a Na<sup>+</sup>/H<sup>+</sup> exchange with alkalinizations of the cytoplasm and increased rates of DNA, even if the ratios among extracellular matrix, proteic bonds, cell deformation, alkalinizations and DNA synthesis do not have an absolute valence because they have not yet been clearly defined [2, 37.

The possibility that the nature of the substrate may induce different phenotypical modulations is highly important for a planned target, not only on a quantitative cell-ingrowth level, but also in order to create conditions favouring an up-regulation of the cell



Figure 1 SEM micrograph of fibroblasts cultured on cordierite DF: (a) low magnification ( $\times$  31); (b) elongated cells tend to go into a hollow of the ceramic ( $\times$  775).



Figure 2 High SEM magnification of fibroblasts cultured on hydroxyapatite. Note that cells seem to swallow little residual ceramic material (× 2500).

| Material         Physical<br>variations after<br>variations after         Type of cell         Observation by phase contrast microscopy after 5 days         Observations<br>variations<br>variations after<br>variations after         Observation by phase contrast microscopy after 5 days         Observations<br>variations<br>variations         Observations           Biological glass AP40         FC         Adhering cells confluent all around the sample, no debris<br>FC         Adhering cells confluent all around the sample, no debris<br>M A2058         Observations           HA 7         M A2058         Adhering cells confluent all around the sample, no debris<br>FC         Both cells types are confluent all around the sample, no certamic debris<br>M A2058         Both cells types are confluent all around the sample, no certamic debris         Few not adh<br>for confluence           Cordierite ST/EKB         more brittle         FC         Both cells types are confluent all around the sample, no certamic debris         Few not adh<br>for confluence           Cordierite EX22         more brittle         FC         Both cells types are confluent all around the sample, no certamic debris         Few not adh<br>for confluence           Cordierite EX22         more brittle         FC         Both cells types are confluent all around the sample, no certamic debris         Few not adh<br>for confluence           Cordierite EX22         more brittle         FC         No adhering fibroblasts, many dead cells, much certamic debris         Few not adh<br>for confluence           Cordieri |                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Biological glass AP40       FC       Adhering cells confluent all around the sample, no debris         Biological glass RKKP       M A2058       Adhering cells confluent all around the sample, no debris         HA 7       M A2058       Adhering cells confluent all around the sample, no debris         HA 7       N A2058       Adhering cells confluent all around the sample, no ceramic debris         HA 7       turned azure       FC       Both cells types are confluent all around the sample, no ceramic debris         HA 7       turned azure       FC       Both cells types are confluent all around the sample, no ceramic debris         M A2058       both cells types are confluent all around the sample, no ceramic debris       Few surviving and suffering cells         Cordierite ST/FKB       more brittle       FC       Both cells types are confluent all around the sample, no ceramic debris         Cordierite ST/FKB       more brittle       FC       Both cells types are confluent all around the sample, no ceramic debris         Cordierite EX22       more brittle       FC       No adhering fibroblasts many dead cells, much ceramic debris         BC 215       Ma 2058       No adhering seattered cells, much ceramic debris       eells         Cordierite EX22       more brittle       FC       Not adhering seattered cells, much ceramic debris         Cordierite DF with smooth surfaces       more brittle </th <th>s Observations by SEM</th>                                                                                                                                                         | s Observations by SEM               |
| Biological glass RKxP       FC       Both cells types are confluent all around the sample, no debris         Hydroxyapatite granules       turned azure       FC       Both cells types are confluent all around the sample, no ceramic debris         HA 7       turned azure       FC       Both cells types are confluent all around the sample, no ceramic debris         HA 7       turned azure       FC       Both cells types are confluent all around the sample, no ceramic debris         MA 2058       Both cells types are confluent all around the sample, no ceramic debris       Few not adh         Cordierite ST/EKB       more brittle       FC       Both cells types are confluent all around the sample, no ceramic debris         Cordierite ST/EKB       more brittle       FC       Both cells types are confluent all around the sample, no ceramic debris         Cordierite ST/EKB       more brittle       FC       Both cells types are confluent all around the sample, no ceramic debris         Cordierite EX22       MA 2058       Not confluent living fibroblasts but suffering       Cells         Cordierite EX22       MA 2058       Not confluent living fibroblasts but suffering       Cells         Cordierite EX22       MA 2058       Not confluent living fibroblasts but suffering       Cells         Cordierite EX22       more brittle       FC       Not confluent living fibroblasts, at ew suffering       Cordie                                                                                                                                                                                            | sirc                                |
| Hydroxyapatite granulesECAdhering cells confluent all around the sample, no debrisHA 7turned azureFCBoth cells types are confluent all around the sample, no ceramic debrisHA 8turned azureFCBoth cells types are confluent all around the sample, no ceramic debrisCordierite ST/EKBmore brituleFCBoth cells types are confluent all around the sample, no ceramic debrisCordierite ST/EKBmore brituleFCBoth cells types are confluent all around the sample, no ceramic debrisCordierite ST/EKBmore brituleFCBoth cells types are confluent all around the sample, no ceramic debrisCordierite EX22M A2058No adhering fibroblasts, many dead cells, much ceramic debrisFew not adhCordierite EX22BC 215Many dead cellsNot confluent living fibroblasts but suffering-Cordierite DF with smooth surfacesmore brituleFCNot confluent living fibroblasts, a few suffering-Cordierite DF with rough surfacesmore brituleFCBoth cell types are confluent all around the sample, no ceramic debris-Cordierite DF with rough surfacesmore brituleFCBoth cell types are confluent all around the sample, no ceramic debris-Cordierite DF with rough surfacesmore brituleFCBoth cell types are confluent all around the sample, no ceramic debris-Cordierite DF with rough surfacesmore brituleFCBoth cell types are confluent all around the sample, no ceramic debris-Cordierite DF with rough surfacesBC 215Well over the confluency<                                                                                                                                                                                                                                 | ao debris                           |
| HA7turned azureFCBoth cells types are confluent all around the sample, no ceramic debrisHA8turned azureFCBoth cells types are confluent all around the sample, no ceramic debrisHA8turned azureFCBoth cells types are confluent all around the sample, no ceramic debrisCordierite ST/EKBmore brittleFCBoth cells types are confluent all around the sample, no ceramic debrisCordierite ST/EKBmore brittleFCBoth cells types are confluent all around the sample, no ceramic debrisCordierite ST/EKBmore brittleFCBoth cells types are confluent all around the sample, no ceramic debrisCordierite EX22BC 215Few surviving and suffering cellsnuch ceramic debrisCordierite EX22Na 2058Formation of cells agglomerations, many dead cells-Cordierite EX22BC 215Many dead cellsNot confluent living fibroblasts but sufferingNot completCordierite DF with smooth surfacesmore brittleFCBoth cell types are confluent all around the sample, no ceramic debris-Cordierite DF treated with HF 2%more brittleFCBoth cell types are confluent all around the sample, no ceramic debris-Cordierite DF with rough surfacesmore brittleFCBoth cells, much ceramic debrisBoth cellsCordierite DF with rough surfacesmore brittleFCBoth cells, much ceramic debrisBoth cellsCordierite DF with rough surfacesmore brittleFCBoth cell types are confluent fibroblasts, a few suffering-Cordierite DF with                                                                                                                                                                                                                                                                 | ris                                 |
| MA 8     M A2058       HA 8     turned azure     FC     Both cells types are confluent all around the sample, no ceramic debris       Cordierite ST/EKB     more brittle     FC     Both cells types are confluent all around the sample, no ceramic debris       Cordierite ST/EKB     more brittle     FC     No adhering fibroblasts, many dead cells, much ceramic debris     Few not adh       Cordierite ST/EKB     more brittle     FC     No adhering and suffering cells     eells       M A2058     Formation of cells agglomerations, many dead cells     Max 2058     Not confluent living fibroblasts but suffering     eells       Cordierite EX22     BC 215     Many dead cells     —     —     —       Cordierite EX22     more brittle     FC     Not confluent living fibroblasts but suffering     Mot complet       Cordierite DF with smooth surfaces     more brittle     FC     Not adhering scattered cells, much ceramic debris     Not complet       Cordierite DF with rough surfaces     more brittle     FC     Both cell types are confluent all around the sample, no ceramic debris     globose BC i       Cordierite DF with rough surfaces     more brittle     FC     Both cell types are confluent all around the sample, no ceramic debris       Cordierite DF with rough surfaces     EC     Not addrering confluent fibroblasts, a few suffering     Both cell                                                                                                                                                                                                                                                            | to ceramic debris                   |
| HA 8     turned azure     FC     Both cells types are confluent all around the sample, no ceramic debris       Cordierite ST/EKB     more brittle     FC     No adhering fibroblasts, many dead cells, much ceramic debris       Cordierite ST/EKB     more brittle     FC     No adhering fibroblasts, many dead cells, much ceramic debris       Cordierite ST/EKB     more brittle     FC     No adhering fibroblasts, many dead cells     eells       M A2058     Formation of cells agglomerations, many dead cells     —     —     —       Cordierite EX22     BC 215     Not confluent living fibroblasts but suffering     —     —       Cordierite EX22     BC 215     Many dead cells     —     —     —       Cordierite EX22     BC 215     Many dead cells     Not complete     —     —       Cordierite EX22     more brittle     FC     Not adhering scattered cells, much ceramic debris     [elbose BC a       Cordierite DF treated with HF 2%     more brittle     FC     Both cell types are confluent all around the sample, no ceramic debris     [elbose BC a       Cordierite DF with rough surfaces     more brittle     FC     Both cell types are confluent all around the sample, no ceramic debris     [elbose BC a       Cordierite DF with rough surfaces     more brittle     FC     Both cell types are confluent fibroblasts, a few suffering       Cordierite DF with                                                                                                                                                                                                                                                           |                                     |
| Cordierite ST/EKBmore brittleFCNo adhering fibroblasts, many dead cells, much ceramic debrisFew not adhBC 215Few surviving and suffering cellsMathering cellsCordierite EX22M A2058Formation of cells agglomerations, many dead cellsCordierite EX22M A2058Formation of cells agglomerations, many dead cellsCordierite EX22M A2058Not confluent living fibroblasts but sufferingCordierite DF with smooth surfacesM A2058Agglomerates of dead melanocite cellsNot completCordierite DF treated with HF 2%more brittleFCBoth cell types are confluent all around the sample, no ceramic debris-Cordierite DF with rough surfacesFCM A2058Adhering confluent fibroblasts, a few sufferingBC and M confluent fibroblasts, a few suffering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | no ceramic debris                   |
| BC 215       Few surviving and suffering cells       eclls         Cordierite EX22       M A2058       Formation of cells agglomerations, many dead cells       -         Cordierite EX22       M A2058       Formation of cells agglomerations, many dead cells       -         Cordierite EX22       BC 215       Many dead cells       Not complete         R       BC 215       Many dead cells       Not complete         R       A2058       Agglomerates of dead melanocite cells       Not complete         Cordierite DF with smooth surfaces       more brittle       FC       Not adhering scattered cells, much ceramic debris       globose BC a         Cordierite DF treated with HF 2%       more brittle       FC       Both cell types are confluent all around the sample, no ceramic debris         Cordierite DF with rough surfaces       BC 215       Well over the confluent fibroblasts, a few suffering       BC and M contracted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nic debris Few not adhering globose |
| Cordierite EX22       M A2058       Formation of cells agglomerations, many dead cells       –         Cordierite EX22       FC       Not confluent living fibroblasts but suffering       –         BC 215       Many dead cells       Not complet       Not complet         Cordierite DF with smooth surfaces       more brittle       FC       Not adhering scattered cells, much ceramic debris       Not complet         Cordierite DF treated with HF 2%       more brittle       FC       Both cell types are confluent all around the sample, no ceramic debris       –         Cordierite DF with rough surfaces       M A2058       Adhering confluent fibroblasts, a few suffering       BC and M confluent fibroblasts, a few suffering       –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | cells                               |
| Cordierite EX22       FC       Not confluent living fibroblasts but suffering       -         Rout condiction       BC 215       Many dead cells       Not complete         BC 215       Many dead cells       Many dead cells       Not complete         BC 215       Many dead cells       Many dead cells       Not complete         Cordierite DF with smooth surfaces       more brittle       FC       Both cell types are confluent all around the sample, no ceramic debris         Cordierite DF treated with HF 2%       more brittle       FC       Both cell types are confluent fibroblasts, a few suffering       BC and M cell confluent fibroblasts, a few suffering         Cordierite DF with rough surfaces       BC 215       Well over the confluent fibroblasts, a few suffering       BC and M cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I                                   |
| BC 215     Many dead cells     Not complete       BC 215     Many dead cells     Not complete       M A2058     Agglomerates of dead melanocite cells     Not complete       Cordierite DF with smooth surfaces     more brittle     FC     Not adhering scattered cells, much ceramic debris       Cordierite DF treated with HF 2%     more brittle     FC     Both cell types are confluent all around the sample, no ceramic debris       Cordierite DF with rough surfaces     FC     Adhering confluent fibroblasts, a few suffering     BC and M c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I                                   |
| M A2058     Agglomerates of dead melanocite cells     globose BC a       Cordierite DF with smooth surfaces     more brittle     FC     Not adhering scattered cells, much ceramic debris       Cordierite DF treated with HF 2%     more brittle     FC     Both cell types are confluent all around the sample, no ceramic debris       M A2058     Adhering confluent fibroblasts, a few suffering     -       Cordierite DF with rough surfaces     BC 215     Well over the confluency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Not completely adhering             |
| Cordierite DF with smooth surfaces       more britle       FC       Not adhering scattered cells, much ceramic debris         Cordierite DF treated with HF 2%       more britle       FC       Both cell types are confluent all around the sample, no ceramic debris         Cordierite DF treated with HF 2%       more britle       FC       Both cell types are confluent all around the sample, no ceramic debris         Cordierite DF with rough surfaces       FC       M A2058       Adhering confluent fibroblasts, a few suffering       BC and M confluency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | globose BC and M cells              |
| Cordierite DF treated with HF 2% more brittle FC Both cell types are confluent all around the sample, no ceramic debris<br>M A2058 Adhering confluent fibroblasts, a few suffering BC and M c<br>BC 215 Well over the confluency BC and M c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     |
| M A2058<br>Cordierite DF with rough surfaces FC Adhering confluent fibroblasts, a few suffering –<br>BC 215 Well over the confluency BC and M or<br>2.11-2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | o ceramic debris                    |
| Cordierite DF with rough surfaces FC Adhering confluent fibroblasts, a few suffering - BC 215 Well over the confluency BC and M α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     |
| BC 215 Well over the confluency $BC$ and $M \alpha$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BC and M cells are strongly         |
| M A2038 Well over the confidency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | adherent to ceramic                 |

metabolism, determining an eventual higher secretion of cell-synthesis products of interest. From the results it was ascertained that cell ingrowth on substrates of bioactive ceramics, such as hydroxyapatite and biological glasses, which is in itself spontaneously possible with no need to add particular factors to the culture liquid [14], might be impaired by the microerosion processes that reduces the stability of the substrate. In the case of the hydroxyapatite substrate (Fig. 2) a characteristic behaviour is observed as a result of corrosion due to exposure to the simulating body fluid (SBF), a behaviour which, even if negligible from the point of view of cracking interaction, is nonetheless deleterious for cell adhesion because the substrate crumbles giving rise to non-adhering "slurry". In the case of bioactive glasses a similar event takes place even if the nature of the substrate at the interface changes in time, becoming slippery. Many not properly well sintetized cordierites appear to crumble because of cell adhesion, with the consequence that cells find it difficult to adhere. A similar behaviour is characteristic of cordierite too if treated with HF to make it rougher, for in this case the toxicity of  $F^-$  ions may be involved. Cordierites sintered at higher temperatures give the best results.

### 4. Conclusions

Highest-purity cordierite sintered at high temperature proves to be a ceramic material fit to host cell cultures. Cells appear to adhere and work very well on such supports, establishing good linking in the process. This kind of ceramic material is therefore expected to be useful for many applications, particularly for the production and/or treatment of biological and/or pharmacological fluid substances and it could also find wide use in the manufacture of filters and reactors. The ceramics known to be biocompatible (e.g. hydroxyapatite, biological glasses) appear less suitable, because they are liable to interact with cells that have a tendency to dissolve the surface layer on which they adhere. Moreover, the material must be properly sintered so as not to give rise to debris which will prevent cells from achieving firm adhesion on

the structure of the ceramic surface. Although a number of well-sintered hydroxyapatite samples exhibit good cell adhesion, hydroxyapatite in itself is too sensitive to the acidic pH values within which it is chemically unstable. Cordierite instead is able to guarantee chemical stability even under the acidic pH conditions in which many cell culture procedures are carried out.

#### References

- 1. S. J. PARULEKAR, T. HASSEL and S. C. TRIPATHI, Int. Rev. Cytology 142 (1992) 145.
- M. R. KOLLER, S. G. EMERSON and B.O. PALSSON, Blood 82 (1993) 378.
- 3. P. J. DUKE, E. L. DAANE and D. MONTUFAR-SOLIS, J. Cellular Biochem. 51 (1993) 274.
- R. MARTINETTI, P. C. MARTINENGO, A. RAVAG-LIOLI, A. KRAJEWSKI and E. RONCARI, "Ceramic prototypes for medical applications", Proceedings of ECERS III, Madrid, September 1993, edited by P. Duran and J. F. Fernandez, Vol. 3 "Engineering Ceramics" (Faenza Editrice Iberica, Madrid, 1993) pp. 17–23.
- G. J. BERG and B. G. D. BODEKER, in "Animal cell biotechnology", edited by R. E. Spier and J. B. Griffiths (Academic Press, N. Y., London, 1988) pp. 321-335.
- M. A. DEWOOD, P. B. KURNIK, M. K. JOLLY, A. C. JAIN, F. KHAJA, H. J. GORFNKEL, D. L. MORRIS and L. SATLER, Clin. Cardiol. 16 (1993) 302.
- W. C. A. VROUWENVELDER, "Comparative histology and biochemistry of osteoblast cultures on several bone replacing materials", edited by W. C. A. Vrouwenvelder (thesis: CIP-Gegevens Koninkluke Bibliotek, Den Haag) (Drukkerij Sinteur, Leiden, The Netherlands, 1993) pp. 7-26.
- S. SBARBATI DEL GUERRA and M. G. CASCONE, Biomateriali 1/2 (1993) 29.
- 9. P. B. VAN WACHEM et al. Biomaterials 6 (1985) 403.
- A. DEKKER, T. BEUGELING, H. WIND, A. POOT, A. BANTJES, J. FEIJEN and W. G. VAN AKEN, J. Mater. Sci. Mater. Med. 2 (1991) 227.
- 11. C. O'NEILL, P. JORDAN and G. IRELAND, Cell 44 (1986) 489.
- 12. P. A. WATSON, The FASEB J. Rev. 5 (1991) 2013.
- 13. M. YAMAMOTO, K. YAMAMOTO and T. NOUMURA, *Exp. Cell Res.* 204 (1993) 121.
- 14. K. GOMI, B. LOWENBERG, G. SHAPIRO and J. E. DAVIES, *Biomaterials* 14 (1993) 91.

This paper was originally accepted after the 1993 Conference of the European Society for Biomaterials.